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1. Introduction: Massive IoT Networks
= Wi-Fi 6’s key technologies and challenges

2. Cross-Link Channel Prediction (CLCP)

= System overview
= ML background on multi-view representation learning
" Our solution: CLCP

3. Implementation and Evaluation
4. Conclusion



Today’s wireless 1oT sensor networks

Wireless IoT sensor networks are changing, scaling up in spectral
efficiency, radio count, and traffic volume as never seen before.
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Wi-Fi 6’s Key Technology: Orthogonal Frequency Division Multiple Access

Previously: Wi-Fi 6:
OFDM OFDMA
Freq.
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Wi-Fi 6’s Key Technology: Orthogonal Frequency Division Multiple Access

Previously:

Freq.

Delivers higher throughput and
lower latency with more users
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How does OFDMA work?

Device 2

Device
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Request| 2 —
v" Request

2. AP periodically requests the buffer status info. (BSR) and channel info. (CSI) to all devices.
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How does OFDMA work?

Estimate  pevice 2

| Channel: The sum of all wireless signal
Request

paths between the AP and the device
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3. Each device calculates its CSI based on the request from the AP.



How does OFDMA work?
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4. Each sensor sends BSR & CSI sequentially.



How does OFDMA work?

Device 2
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6. AP tells scheduled devices to transmit their data in the assigned freq.
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How does OFDMA work?
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7. Scheduled devices transmit data in its assigned freq. simultaneously
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Scheduling OFDMA requires the channel information!

Channel: The sum of all wireless signal
paths between the AP and the device

At time ty, channels look like:
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Scheduling OFDMA requires the channel information!

User 1:
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Scheduling OFDMA requires the channel information!
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But channels vary over time!

User 2
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At time t4, wireless channels change!
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But channels vary over time!

At time t4, wireless channels change!
User 1:

Signal
Strength —————
We reschedule OFDMA based
on the - channels: User 2: Freq.
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Highly-dynamic, Massive number of users Increase in the

busy environments channel bandwidth

Need to collect The quantity of The size of each
CSIs frequently CSIs increases CSI increases




Acquiring CSIs is also power inefficient

Wi-F1 6 introduces Target Wait Time (TWT) to reduce power consumption of

[oT devices but ...
Device 2
Device 1 R \Devic 3

€

\Dexice

\/1>>

Wake up and

send me CSIs
"

18



2. Cross-Link Channel Prediction (CLCP)

= System overview

= ML background on multi-view representation learning
* Our solution: CLCP
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Cross-Link Channel Prediction (CLCP)
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Our Solution: Predict CSIs instead of acquiring them
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Our System Overview

Received
OFDMA pa4

(1) OFDMA Transmission at T;: AP receives the OFDMA packet.
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Our System Overview

Received
OFDMA
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(2) Channel timeout at T,: CLCP predicts CSIs of all users based on the measured wireless path parameters
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Our System Overview
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(3) Scheduling & Resource Alloc. at T3: Based on predicted CSIs, the AP schedules the next OFDMA
packet and asks the scheduled devices to transmit their data accordingly. 24



Our System Overview

Dev
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No CSI exchange at all!!
We instead opportunistically use existing transmissions
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(4) OFDMA Transmission at T 4: devices transmit their data according to the instruction from the AP




Machine learning in a nutshell

* Learning a mapping between input (observation) and output (task).
* Single-view learning: an observation 1s constructed from a single source.

f:0 Y

Object Observations Tasks
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Machine learning in a nutshell

* Multi-view learning: an observation is constructed from multiple sources.
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Multi-view representation learning
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CLCP: multi-view representation learning
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3. Implementation and Evaluation
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Implementation

Testbed 1: - 5> m .

18 m

Hardware:

Testbed 2:
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Significant throughput improvement

Aggregated throughput across time for every 500 ms:
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Overhead Reduction with Varying Parameters
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CLCP significantly reduces the power consumption
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Conclusions

* CLCP for predicting wireless channels

* Adopting techniques from Computer Vision to Wireless Communications.
* Allowing fast and power efficient data transmissions from IoT devices to the AP.
* Overcome fundamental challenges in massive-IoT networks.
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