A Low-Power OAM Metasurface for Rank-Deficient Wireless Environments

Kun Woo Cho, Srikar Kasi, Kyle Jamieson

Common uses of backscattering systems

Low Power Devices in Smart Agriculture

Satellite Channels in Space Communication

Common uses of backscattering systems

Can we leverage a spatial multiplexing for backscattering systems?

Multiple-Input Multiple-Output (MIMO) exploits *multipath* propagation to *multiply* link capacity.

Common uses of backscattering systems

Low Power Devices in Smart Agriculture

Base Station Legacy Receiver In such cases, wireless channel is rank-deficient! 1 011 0 bit Backscatter Alice Bob Backscatter Bob Alice

Satellite Channels in Space Communication

Our solution: spatial multiplexing with a smart surface!

6

Our solution: spatial multiplexing with a smart surface!

Orbital Angular Momentum (OAM)

SAM has three states:

S = -1 (right-hand circular pol.) S = 0 (linear pol.) S = 1 (left hand circular pol.)

S = 1 (left-hand circular pol.)

Orbital angular momentum (OAM): Spatial Distribution

OAM has theoretically *infinite* states:

S determined by the topological charge of ℓ .

Orbital Angular Momentum (OAM)

OAM beam has state ℓ where the phase *twists* ℓ times over distance of one wavelength:

 $\varphi(r, \varphi) = \exp(i\ell\varphi)$ where $(\ell = ... - 3, -2, -1, 0, +1, +2, +3...)$

Orbital Angular Momentum (OAM)

Creating beams with different OAM states that are *orthogonal* to each other \rightarrow Enabling MIMO spatial multiplexing

Metasurface Offers Unprecedented OAM Capabilities

Antenna Type	Electronically reconfigurable	Low Loss	Beamforming Capability	Low power consumption	High steering resolution
Î			X	0 ^y	Z,

Lee [1]	UCA	Fixed	\sim	×	×	×
Shi [2]	UCA	Discrete	×	×	×	×
Liu [3]	Metasurface	Discrete	\checkmark	\mathbf{A}	\checkmark	×

Monolith	Metasurface	Continuous	~	\checkmark	\checkmark	~
----------	-------------	------------	---	--------------	--------------	---

Lee, Doohwan, et al. "An experimental demonstration of 28 GHz band wireless OAM-MIMO (orbital angular momentum multi-input and multi-output) multiplexing." 2018 IEEE 87th Vehicular Technology Conference, 2018.
Shi, Chengzhi, et al. "High-speed acoustic communication by multiplexing orbital angular momentum." Proceedings of the National Academy of Sciences 114.28 (2017): 7250-7253
Liu, Baiyang, et al. "Generation of an orbital-angular-momentum-mode-reconfigurable beam by a broadband 1-bit electronically reconfigurable transmittarry." Physical Review Applied (2021).

Reflective Meta-atom

Reflection coefficient across voltage levels

Reflective Metasurface

(1) Compute required phase shifts for an OAM state l

$$\varphi(x,y) = l \cdot \tan^{-1}\left(\frac{y}{x}\right) - 2\pi/\lambda \cdot r_{xy}$$
 where $r_{xy} = \sqrt{x^2 + y^2 + d^2}$

NΔ

NΔ

Channel capacity gain in free-space systems

Generated OAM Beams

Conclusions and Future Work

- Monolith for rank-deficient wireless environments
 - Expanding the applicability of MIMO in rank-deficient wireless environments.
 - Advantages of low power, high gain, and flexible capability of modulating EM waves
- Future Works
 - Beam divergence, beam distortion, beam steering.
 - Free-space optical communication (FSO) at extremely high frequency.

