

mmWall: A Steerable, Transflective Metasurface for mmWave Networks

Summary

- While millimeter-wave (mmWave) spectrum enables high spectral efficiency and low latency wireless networks, it is extremely vulnerable to blockage by walls, people, and obstacles.
- mmWall is the first electronically almost-360° steerable metamaterial surface that refracts, reflects, or splits incoming mmWave signals, overcoming mmWave's fundamental challenges.

mmWall's Key Scenarios

Since BS and mmWall are stationary, alignment then happens between mmWall and UE, only.

UE scans its Rx beam

detect ENodeB

Kun Woo Cho¹, Mohammad H. Mazaheri², Jeremy Gummeson³, Omid Abari², Kyle Jamieson¹ 1. Department of Computer Science, Princeton University; 2. Department of Computer Science, UCLA 3. Department of Computer Science, UMass

mmWall Hardware Design and Analysis

1st meta-atom rib **Incident Wave**

Figure 4: 120×197.6 mm hardware prototype. Meta-atoms are fabricated on a rib made of Rogers 4003C PCB board. There are 76 ribs, each consisting of 28 vertical meta-atoms. DACs independently control all cells of every mmWall rib.

Evaluation

Figure 6: *Left:* SNR measurements with and without mmWall; *right:* CDF of SNR gains of one or more mmWalls over the best environment path (mmWall \bigstar , Tx \blacktriangle , Rx \bigcirc).

Download the paper:

https://www.usenix.org/system/files/ nsdi23-cho-kun-woo.pdf